GBr6NL: a generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation.

نویسندگان

  • Harianto Tjong
  • Huan-Xiang Zhou
چکیده

The nonlinear Poisson-Boltzmann (NLPB) equation can provide accurate modeling of electrostatic effects for nucleic acids and highly charged proteins. Generalized Born methods have been developed to mimic the linearized Poisson-Boltzmann (LPB) equation at substantially reduced cost. The computer time for solving the NLPB equation is approximately fivefold longer than for the LPB equation, thus presenting an even greater obstacle. Here we present the first generalized Born method, GBr(6)NL, for mimicking the NLPB equation. GBr(6)NL is adapted from GBr(6), a generalized Born method recently developed to reproduce the solvation energy of the LPB equation [Tjong and Zhou, J. Phys. Chem. B 111, 3055 (2007)]. Salt effects predicted by GBr(6)NL on 55 proteins overall deviate from NLPB counterparts by 0.5 kcal/mol from ionic strengths from 10 to 1000 mM, which is approximately 10% of the average magnitudes of the salt effects. GBr(6)NL predictions for the salts effects on the electrostatic interaction energies of two protein:RNA complexes are very promising.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations

We review recent developments of fast analytical methods for macroscopic electrostatic calculations in biological applications, including the Poisson-Boltzmann (PB) and the generalized Born models for electrostatic solvation energy. The focus is on analytical approaches for hybrid solvation models, especially the image charge method for a spherical cavity, and also the generalized Born theory a...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Modification of the Generalized Born Model Suitable for Macromolecules

The analytic generalized Born approximation is an efficient electrostatic model that describes molecules in solution. Here it is modified to permit a more accurate description of large macromolecules, while its established performance on small compounds is nearly unaffected. The modified model is also adapted to describe molecules with an interior dielectric constant not equal to unity. The mod...

متن کامل

Evaluation of Models of Electrostatic Interactions in Proteins

The conformations of proteins and protein-protein complexes observed in nature must be low in free energy relative to alternative (not observed) conformations, and it is plausible (but not absolutely necessary) that the electrostatic free energies of experimentally observed conformations are also low relative to other conformations. Starting from this assumption, we evaluate alternative models ...

متن کامل

New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations

In a recent article (Lee, M. S.; Salsbury, F. R. Jr.; Brooks, C. L., III. J Chem Phys 2002, 116, 10606), we demonstrated that generalized Born (GB) theory provides a good approximation to Poisson electrostatic solvation energy calculations if one uses the same definitions of molecular volume for each. In this work, we present a new and improved analytic method for reproducing the Lee-Richards m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 19  شماره 

صفحات  -

تاریخ انتشار 2007